Mimesis

Python library, which helps generate mock data for various purposes. This data can be particularly useful during software development and testing.

View the Project on GitHub

Mimesis

Build Status codecov PyPI version Python

Mimesis is a fast and easy to use library for Python programming language, which helps generate mock data for a variety of purposes in a variety of languages. This data can be particularly useful during software development and testing. For example, it could be used to populate a testing database for a web application with user information such as email addresses, usernames, first names, last names, etc.

Documentation

Mimesis is very simple to use, and the below examples should help you get started. Complete documentation for Mimesis is available on Read the Docs.

Installation

To install mimesis, simply:

➜  ~ pip install mimesis

Also you can install it manually:

(env) ➜ python3 setup.py install
# or
(env) ➜ make install

Getting started

As we said above, this library is really easy to use. A simple usage example is given below:

>>> from mimesis import Person
>>> from mimesis.enums import Gender
>>> person = Person('en')

>>> person.full_name(gender=Gender.FEMALE)
'Antonetta Garrison'

>>> person.occupation()
'Backend Developer'

>>> templates = ['U_d', 'U-d', 'l_d', 'l-d']
>>> for template in templates:
...     person.username(template=template)

'Adders_1893'
'Abdel-1888'
'constructor_1884'
'chegre-2051'

Locales

You can specify a locale when creating providers and they will return data that is appropriate for the language or country associated with that locale:

>>> from mimesis import Person

>>> de = Person('de')
>>> fr = Person('fr')
>>> pl = Person('pl')

>>> de.full_name()
'Sabrina Gutermuth'

>>> fr.full_name()
'César Bélair

>>> pl.full_name()
'Światosław Tomankiewicz'

Mimesis currently includes support for 33 different locales.

Data providers

Mimesis support over twenty different data providers available, which can produce data related to food, people, computer hardware, transportation, addresses, and more. See details for more information.

Provider Description
1 Address(*args, **kwargs) Address data (street name, street suffix etc.)
2 Business(*args, **kwargs) Business data (company, company_type, copyright etc.)
3 Code(*args, **kwargs) Codes (ISBN, EAN, IMEI etc.)
4 ClothingSizes(*args, **kwargs) Clothing sizes (international sizes, european etc.)
5 Cryptographic(*args, **kwargs) Cryptographic data
6 Datetime(*args, **kwargs) Datetime (day_of_week, month, year etc.)
7 Development(*args, **kwargs) Data for developers (version, programming language etc.)
8 File(*args, **kwargs) File data (extension etc.)
9 Food(*args, **kwargs) Information on food (vegetables, fruits, measurements etc.)
10 Games(*args, **kwargs) Games data (game, score, pegi_rating etc.)
11 Payment(*args, **kwargs) Payment data (credit_card, credit_card_network etc.)
12 Person(*args, **kwargs) Personal data (name, surname, age, email etc.)
13 Text(*args, **kwargs) Text data (sentence, title etc.)
14 Transport(*args, **kwargs) Dummy data about transport (truck model, car etc.)
15 Science(*args, **kwargs) Scientific data (math_formula, rna, dna etc.)
16 Structured(*args, **kwargs) Structured data (html, css etc.)
17 Internet(*args, **kwargs) Internet data (facebook, twitter etc.)
18 Hardware(*args, **kwargs) The data about the hardware (resolution, cpu, graphics etc.)
19 Numbers(*args, **kwargs) Numerical data (floats, primes, digit etc.)
20 Path(*args, **kwargs) Provides methods and property for generate paths
21 UnitSytem(*args, **kwargs) Provides names of unit systems in international format
22 Generic(*args, **kwargs) All at once

When you only need to generate data for a single locale, use the Generic() provider, and you can access all providers of Mimesis from one object.

>>> from mimesis import Generic
>>> from mimesis.enums import TLDType
>>> g = Generic('es')

>>> g.datetime.month()
'Agosto'

>>> g.food.fruit()
'Limón'

>>> g.internet.top_level_domain(TLDType.GEOTLD)
'.moscow'

Custom Providers

You also can add custom provider to Generic(), using add_provider() method:

>>> from mimesis import Generic
>>> from mimesis.providers import BaseProvider
>>> generic = Generic('en')

>>> class SomeProvider(BaseProvider):
...     class Meta:
...         name = "some_provider"
...
...     def hello(self):
...         return "Hello!"

>>> class Another(BaseProvider):
...     def bye(self):
...         return "Bye!"

>>> generic.add_provider(SomeProvider)
>>> generic.add_provider(Another)

>>> generic.some_provider.hello()
'Hello!'

>>> generic.another.bye()
'Bye!'

or multiple custom providers using method add_providers():

>>> generic.add_providers(SomeProvider, Another)

Too lazy to search for data? No problem, we found them for you and collected them here.

Builtins specific data providers

Some countries have data types specific to that country. For example «Social Security Number» (SSN) in the United States of America (en), and «Cadastro de Pessoas Físicas» (CPF) in Brazil (pt-br). If you would like to use these country-specific providers, then you must import them explicitly:

>>> from mimesis import Generic
>>> from mimesis.builtins import BrazilSpecProvider

>>> generic = Generic('pt-br')
>>> generic.add_provider(BrazilSpecProvider)
>>> generic.brazil_provider.cpf()
'696.441.186-00'

You can use specific-provider without adding it to Generic():

>>> BrazilSpecProvider().cpf()
'712.455.163-37'

Generating data by schema

For generating data by schema, just create instance of Field object, which take any string which represents name of the any method of any supported data provider (see «API reference») and the **kwargs of the method, after that you should describe the schema in lambda function and pass it to object Schema and call method create():

>>> from mimesis.schema import Field, Schema
>>> from mimesis.enums import Gender
>>> _ = Field('en')
>>> description = (
...     lambda: {
...         "id": _('uuid'),
...         "name": _('word'),
...         "version": _('version', pre_release=True),
...         "owner": {
...             "email": _('email', key=str.lower),
...             "token": _('token'),
...             "creator": _('full_name', gender=Gender.FEMALE),
...         },
...     }
... )
>>> schema = Schema(schema=description)
>>> schema.create(iterations=1)

Output:

[
  {
    "owner": {
      "email": "aisling2032@yahoo.com",
      "token": "cc8450298958f8b95891d90200f189ef591cf2c27e66e5c8f362f839fcc01370",
      "creator": "Veronika Dyer"
    },
    "version": "4.3.1-rc.5",
    "name": "pleasure",
    "id": "33abf08a-77fd-1d78-86ae-04d88443d0e0"
  }
]

Mimesis support generating data by schema only starting from version 1.0.0.

Integration with py.test and factory_boy

We have created libraries which can help you easily use Mimesis with factory_boy and py.test.

How to Contribute

  1. Fork it
  2. Take a look at contributions guidelines
  3. Create your feature branch (git checkout -b feature/new_locale)
  4. Commit your changes (git commit -am 'Add new_locale')
  5. Add yourself to list of contributors
  6. Push to the branch (git push origin feature/new_locale)
  7. Create a new Pull Request

License

Mimesis is licensed under the MIT License. See LICENSE for more information.

Disclaimer

The authors assume no responsibility for how you use this library data generated by it. This library is designed only for developers with good intentions. Do not use the data generated with Mimesis for illegal purposes.